COMUNE DI ORISTANO PROVINCIA DI ORISTANO

PIANO DI LOTTIZZAZIONE CREAS - C2Ru IN LOCALITÀ BAU CANNAS STUDIO DI COMPATIBILITA' IDRAULICA E DELL'INVARIANZA IDRAULICA (ARTT. 8 E 47 NTA PAI)

Responsabili dello studio:

L'Ingegnere Idraulico Davide Sechi

II Geol. Fausto A. Pani

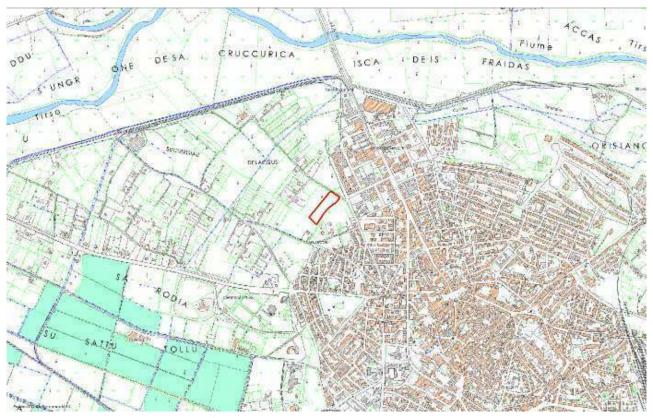
II Geol. Roberta Maria Sanna

N. 120 DOH. Gepl. ROBERTA MARIA SAHNA

Maggio 2017

INDICE

1	PREN	IESSA	3
2	IL PR	OGETTO	5
3	INQU	ADRAMENTO GEOGRAFICO	6
4	INQU	ADRAMENTO CARTOGRAFICO	7
5	INQU	ADRAMENTO CLIMATICO	8
	5.1	INQUADRAMENTO CLIMATICO	8
	5.2	TERMOMETRIA	8
	5.3	PRECIPITAZIONI	10
	5.4	REGIME ANEMOMETRICO	12
6	INQU	ADRAMENTO GEOLOGICO STRUTTURALE E STRATIGRAFICO	14
7	INQU	ADRAMENTO GEOMORFOLOGICO	20
8	INQU	ADRAMENTO IDROGEOLOGICO	
	8.1	ACQUE SUPERFICIALI	23
	8.2	ACQUE SOTTERRANEE	24
9	GEOL	OGIA DELL'AREA RISTRETTA	29
	9.1	ALLUVIONI RECENTI E ATTUALI	29
10) INT	ERAZIONI CON LA PERICOLOSITÀ E CONDIZIONI DI AMMISSIBILITÀ	30
	10.1	PAI, PSFF E PGRA	30
	10.2	LA PERICOLOSITÀ IDRAULICA PER L'AREA INTERESSATA	32
11	I VE	RIFICA DELL'INVARIANZA IDRAULICA	33
10) (O	NCLUSIONI	38


1 PREMESSA

La presente Relazione supporta la determinazione della compatibilità idraulica del progetto inerente la lottizzazione residenziale in zona **C2ru** alla periferia occidentale di Oristano.

L'intervento urbanistico è configurato come segue:

- Realizzazione di un Piano di Lottizzazione convenzionato C 2ru individuato in Località Bau Cannas del Comune di Oristano
- COMMITTENTE Creas S.r.l., via Regina Elena n°63, San Nicolò d'Arcidano (OR)
- PROGETTISTA e D.L. Ing. Stefano Volpe, via Regina Elena N° 63, San Nicolò d'Arcidano (OR).

Per maggiori dettagli sulla progettazione tecnico-urbanistica si rimanda alla Relazione generale di Progetto ed ai relativi Elaborati Grafici.

Mappa - L'area è posta nella periferia Nord-Ovest di Oristano

La presente Relazione di Compatibilità Idraulica contiene le risultanze dello studio effettuato in ottemperanza a quanto disposto dagli articoli 8, 26 e 47 delle Norme Tecniche di Attuazione del P.A.I. all'interno del territorio oggetto di pianificazione.

Il presente rapporto ha come riferimento le N.T.A. del PAI nei seguenti articoli:

ARTICOLO 8 "Indirizzi per la pianificazione urbanistica e per l'uso di aree di costa"

2. Indipendentemente dall'esistenza di aree perimetrate dal P.A.I., in sede di adozione di nuovi strumenti urbanistici anche di livello attuativo e di varianti generali agli strumenti urbanistici vigenti i Comuni [...] assumono e valutano le indicazioni di appositi studi di compatibilità idraulica geologica e geotecnica, predisposti in osservanza dei successivi articoli 24 e 25, riferiti a tutto il territorio comunale o alle sole aree interessate dagli atti proposti all'adozione.

5. In applicazione dell'articolo 26, comma 3, delle presenti norme negli atti di adeguamento dei piani urbanistici comunali al P.A.I. sono delimitate puntualmente alla scala 1: 2.000 le aree a significativa pericolosità idraulica o geomorfologica non direttamente perimetrate dal P.A.I.

ARTICOLO 26 "Aree pericolose non perimetrate nella cartografia di piano"

- 1. Possiedono significativa pericolosità idraulica le seguenti tipologie di aree idrografiche appartenenti al bacino idrografico unico della Regione Sardegna:
 - a. reticolo minore gravante sui centri edificati;

[..]

- 3. Per le tipologie di aree indicate nei commi 1 e 2 le prescrizioni applicabili valgono all'interno di porzioni di territorio delimitate dalla pianificazione comunale di adeguamento al P.A.I., ai sensi dell'articolo 8, comma 5. [...].
- 4. Alle aree elencate nei precedenti commi 1 e 2, dopo la delimitazione da parte della pianificazione comunale di adeguamento al P.A.I., si applicano le prescrizioni individuate dalla stessa pianificazione comunale di adeguamento al P.A.I. tra quelle per le aree di pericolosità idrogeologica molto elevata, elevata e media.

ARTICOLO 47 - Invarianza Idraulica

- 1. Per invarianza idraulica si intende il principio in base al quale le portate di deflusso meteorico scaricate dalle aree urbanizzate nei recettori naturali o artificiali di valle non sono maggiori di quelle preesistenti all'urbanizzazione.
- 2. I comuni in sede di redazione degli strumenti urbanistici generali o di loro varianti generali e in sede di redazione degli strumenti urbanistici attuativi, stabiliscono che le trasformazioni dell'uso del suolo rispettino il principio dell'invarianza idraulica.
- 3. Gli strumenti urbanistici generali ed attuativi individuano e definiscono le infrastrutture necessarie per soddisfare il principio dell'invarianza idraulica per gli ambiti di nuova trasformazione e disciplinano le modalità per il suo conseguimento, anche mediante la realizzazione di vasche di laminazione e vasche volano.
- 4. Sono fatte salve eventuali normative già adottate dai comuni per l'applicazione del principio dell'invarianza idraulica.
- 5. La Regione approva normative specifiche con l'obiettivo di incentivare il perseguimento del principio della invarianza idraulica anche per i contesti edificati esistenti.

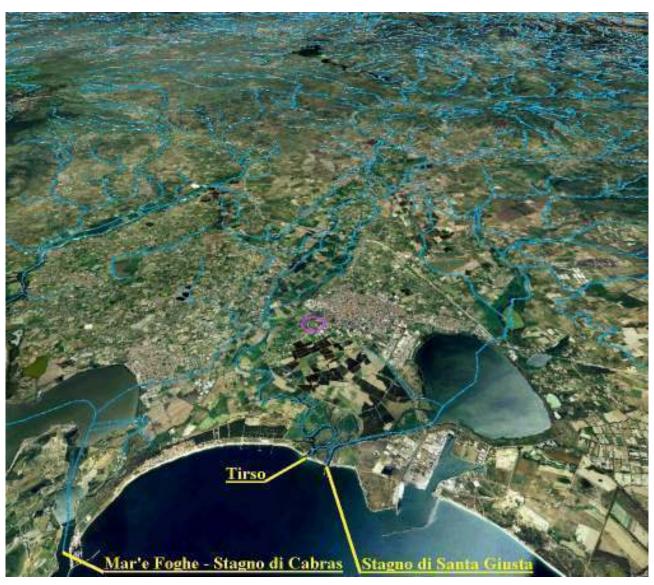
Lo studio si pone come obbiettivo, stante l'assenza di studi di dettaglio di livello comunale, la verifica puntuale della invarianza idraulica e le eventuali modalità per il suo rispetto.

Stanti le NTA del vigente PUC di Oristano, ne discende che, anche rispetto alle eventuali fasce di tutela dei corpi idrici superficiali, gli interventi previsti risultino compatibili con le NTA del PAI vigente.

2 IL PROGETTO

L'area coinvolta dal progetto è costituita da un fondo posto in ambito C2Ru posto in prossimità della Via Campanelli.

Area di intervento sull'immagine 2015


3 INQUADRAMENTO GEOGRAFICO

Il sito ricade nella Sardegna centro-occidentale, nel settore centrale del Campidano di Oristano.

Il bacino idrografico sotteso dal sistema costiero è suddiviso tra il bacino del Tirso e quello dei minori adiacenti.

Il settore di studio ricade all'interno del Bacino idrografico del Tirso, attraverso il sistema drenante di Pesaria, quindi del Canale di San Giovanni e lo Stagno di Santa Giusta.

La morfologia naturale e l'idrografia del settore sono stati profondamente modificati nel tempo da una serie di opere di bonifica e di sistemazione idraulica e fondiaria e sono attualmente gestiti attraverso sollevamenti artificiali che scaricano nel Canale di San Giovanni e quindi nello Stagno di Santa Giusta.

Mappa - Il reticolo idrografico visto dalla foce e la zona di intervento in viola


L'area è posta ad una quota compresa tra i 5,9 ed i 6,5 m s.l.m.m..

Il settore è pianeggiante con dislivelli ridotti e pendenze prossime a 0,2% ed è posto nella piana alluvionale del Tirso.

4 INQUADRAMENTO CARTOGRAFICO

Il settore di Oristano oggetto di analisi è compreso nel F° 528 sez I - Oristano nord - e nel F°528 sez. II - Oristano sud- della Carta Topografica d'Italia dell'IGMI a scala 1:25.000.

L'area è ricompresa nelle Sezione 528080 "Oristano" della Carta Tecnica Regionale (CTR) in scala 1:10.000.

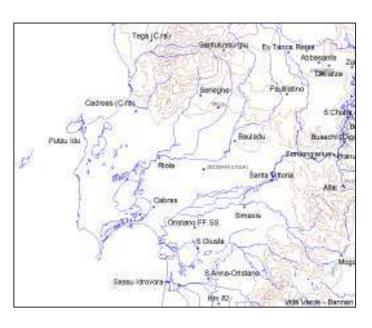
Mappa – Stralcio dalla cartografia IGMI comprendente l'area in oggetto

Mappa – Stralcio dalla immagine da satellite alla data del 13 aprile 2013 comprendente l'area in oggetto

5 INQUADRAMENTO CLIMATICO

5.1 INQUADRAMENTO CLIMATICO

L'area in esame ricade nella Sardegna centro-occidentale e mostra caratteristiche topografiche, pluviometriche e termometriche riferibili alla macro-area costiera del golfo di Oristano, con caratteri orografici tipici della pianura costiera, con altitudine compresa tra 6,00 ed i 2.00 m slm ed il livello del mare.


L'area pertanto non presenta variabilità orografiche che possano determinare variazioni sul tipo di clima che caratterizza la piana costiera.

Per delineare i caratteri climatici dell'area vasta intorno all'area del pozzo sono stati analizzati i regimi dei principali parametri meteoclimatici, attraverso l'elaborazione e l'analisi e delle serie storiche dei parametri meteorologici principali rilevati nelle stazioni meteorologiche ricadenti nel territorio in esame ed in quelle ubicate nel suo intorno.

I dati utilizzati provengono dalla sezione del Genio Civile di Cagliari dell'Assessorato Regionale ai Lavori Pubblici, dagli Uffici Regionali dell'ENEL, dall'EAF, dalla Marina Militare e dall'Atlante della Sardegna (Pracchi et alii).

I diversi regimi meteoclimatici sono stati definiti elaborando ed analizzando le osservazioni giornaliere, rilevate dal 1922 al 1992 nelle stazioni meteorologiche di Cabras, Riola, Capo Frasca, Oristano (1922-2002), Santa Giusta e Santa Lucia. Di queste stazioni solo quella e di Santa Lucia (8 m slm) registra regolarmente, oltre alla pluviometria e le temperature l'umidità dell'aria e l'eliofania. Per il regime anemometrico oltre ai dati provenienti dalla stazione di Oristano (SI), sono stati considerati anche quelli di Capo Frasca (Marina Militare) e del Cirras (Enel).

	ENTE	nome	quota m s.l.m.	Coord. G.B. EST m	Coord. G.B. NORD m
98		Capa Frasca (Aer)	92	1453250	4402300
99	SI	Arborea	7	1464120	4402760
100	81	Memubiu (C.re)	32	1471000	4402420
101	SI	Km.82	32		4405650
102	SI	S.Anne-Oristena	12		4409400
103	SI	S.Giusta	10	1466560	4413930
104	SI	Sessu khovore	5		4408500
105	SI	Oristano FF.SS.	12	1466090	4417020
165	SI	Ex Tanca Regia	332	1480100	4443300
166	81	Abbasaria	317	1484600	4441710
167	81	Paulisino	280		4437020
168	SI	Fordongianus	32		4427300
169	SI	Magarella	299		4412870
170	81	Santa Vittoria	22	1477600	4424100
171	SI	Simeois	17	1473530	4420110
172	SI	Biolo	9	1460780	4427470
173	SI	Cabras	9	1460000	4420100
174	SI	Santulussurgiu	557	1470430	4443630
175	SI	Seneghe	300	1467010	4436810
176	SI	Beuledu	29	1472060	4430010
177	SI	Cadreas (C.ra)	74	1457350	4434450
408	SI	Putzu klu	4	1449500	4430850
3	SAR	ARBOREA	2	1466889	4402818
4	SAR	MLS	125	1469754	4435241
6	SAR	GHLARZA	293	1485233	4440190
- 11	SAR	ZEDDIANI (UCEA)	14	1467534	4425939
14	SAR	SCANO MONTIFERRO	405	1466211	4453417

Mappa – La rete delle stazioni di misura utilizzate

Stazioni presenti nell'area circostante il settore di Oristano

5.2 TERMOMETRIA

L'analisi dei dati rilevati nelle stazioni termometriche disponibili indicano che nel settore interessato dal progetto la temperatura media annua è di 16,3°C. Le escursioni termiche annue

codS	ENTE	nome	quota m s.l.m.	Temp media diurna 1922-02	Temp minima diuma 1922-02	Temp massima diurna 1922- 02
98	AER	Capo Frasca (Aer)	92	16.5	16.0	17.4
99	SI	Arborea	7	14.7	14.1	15.7
100	81	Memubiu (C.re)	32	18.1	18.1	18.1
101	SI	Km.82	32	0.0	0.0	0.0
102	SI	S.Anne-Oristena	12	17.2	15.9	18.1
103	SI	S.Giusta	10	16.7	14.5	18.2
104	81	Sessu khovore	5	16.5	15.9	19.5
105	SI	Oristano FF.SS.	12	16.5	13.1	17.7
165	81	Ex Tanca Regia	332	0.0	0.0	0.0
166	81	Abbasaria	317	14.5	9.2	18.1
167	81	Paulisino	280	16.2	15.5	16.9
168	81	Fordongienus	32	16.5	15.5	18.5
169	81	Magarella	299	15.3	14.9	15.5
170	81	Sente Vittoria	22	16.5	16.5	16.5
171	SI	Simeois	17	16.5	16.5	17.3
172	81	Biolo	9	16.7	16.2	17.8
173	81	Cabras	9	0.0	0.0	0.0
174	SI	Santulussurgiu	557	14.3	10.0	19.4
175	81	Sanegha	300	0.0	0.0	0.0
176	81	Beuledu	29	18.2	16.7	20.4
177	81	Cadreas (C.ra)	74	0.0	0.0	0.0
408	81	Putzu idu	4	0.0	0.0	0.0

variano tra i 14,2°C di Santa Giusta ed i 13,3°C di Capo Frasca, mentre le escursioni termiche giornaliere sono comprese tra i 6,1°C ed i 12°C.

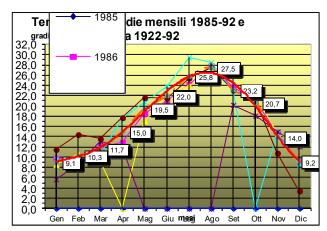
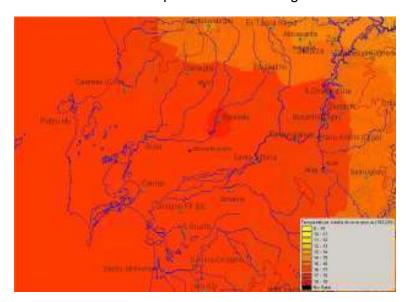
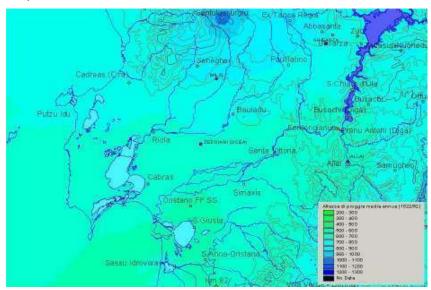



Grafico andamento della temperatura media diurna nell'arco dell'anno per la stazione di Oristano

Temperature tipiche delle stazioni circostanti l'area di Oristano

Il mese più freddo è generalmente gennaio con temperatura media di 9,6°C, anche se temperature assolute più fredde si possono registrare anche nei mesi di dicembre e febbraio. Solo raramente si riscontrano temperature sotto zero gradi.



Temperatura media diurna su base annua dell'area oristanese

I mesi più caldi sono luglio e agosto, con valori medi di temperatura massima intorno ai 30°C. In questi mesi le temperature massime assolute possono raggiungere i 37-38°C e superare anche i 40°C. Anche nei mesi di settembre e giugno si possono registrare temperature abbastanza alte con valori massimi generalmente intorno ai 35°C e meno frequentemente con valori massimi intorno ai 36-37°C. L'autunno è generalmente più caldo della primavera, per l'influsso del mare così come i minimi ed i massimi termici sono in parte attenuati per l'influenza termoregolatrice delle masse d'aria di provenienza marittima.

5.3 PRECIPITAZIONI

La pluviometria varia tra 550 mm/anno ed i 650 mm/anno.

Mappa – Piovosità media-annua per l'area oristanese

Per la stazione di Riola (9 m slm) sono disponibili rilevazioni per circa 49 anni ed il valore medio delle precipitazioni è di 642.0 mm/anno. La piovosità massima mai registrata sulle 24 ore è di 97 mm, mentre quella probabile a 500 anni è di 139.77 mm. In questa stazione il mese più piovoso, con valori medi di 152,2 mm/m, è dicembre, quello più asciutto è luglio con 3,1 mm/m.

Nella stazione di Cabras (9 m slm), per la quale si hanno solo 21 anni di osservazioni, il valore medio annuo delle precipitazioni è di 629,2 mm/a. Il mese più piovoso è dicembre, con valori medi di 95,6 mm/m, mentre quello pù secco è luglio con valori medi di 2,3 mm/m. In questa stazione il massimo pluviometrico in 24 ore di 79,4 mm/g si registrò nel 1933.

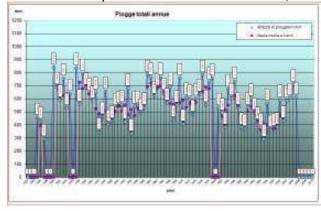


Grafico – Piovosità media-annua – S. Oristano

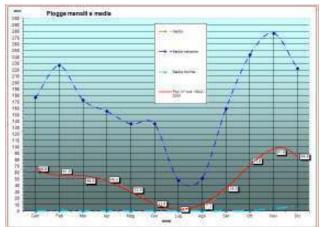


Grafico – Piogge mensili e media – S. Oristano

		Piovosita	à annua 192	22-2002		Piovosità massima assoluta				
Nome	Quota m slm	media	massima	minima	Anni di Oss.	Reale sulle 24 h 1922-80	24 h a 50 anni	24 h a 100 anni	24 h a 200 anni	24 h a 500 anni
Capo Frasca	92	556,70	721,20	388,60						
Arborea	7	669,26	1022,50	419,00	40	112,00	98,08	110,63	123,31	140,14
S. Anna	12	570,48	845,70	283,90	50	68,40	80,75	91,08	101,52	115,38
S.Giusta	10	569,84	847,20	307,30	58	72,50	81,45	91,88	102,41	116,39
Sassu Idrovora	5	612,14	867,60	366,20	30	129,00	93,77	105,77	117,89	133,99
Oristano FF SS	12	563,45	841,60	291,60	46	74,00	87,96	99,21	110,58	125,68
Simaxis	17	620,28	1156,00	325,20	57	104,00	84,67	95,50	106,45	120,92
Riola	9	642,03	1071,00	336,00	49	97,00	97,82	110,34	122,98	139,77
Cabras	9	629,23	968,70	406,90	20	79,40	92,37	104,19	116,13	131,98

Caratteristiche delle precipitazioni misurate e analisi della pioggia probabile nelle 24 h con differenti tempi di ritorno

A Santa Lucia si registrano valori medi annui di precipitazioni di 574,7 mm/a, il mese più piovoso con 134,8 mm/m è dicembre, quello più asciutto, con 4,6 mm/m, è luglio.

Per la stazione di Santa Giusta (10 m slm) le precipitazioni medie annue sono di 580,9 mm/a. Il mese più piovoso è dicembre con valori medi di 95,2 mm/m, mentre quello più asciutto è luglio con 3,1 mm/m. Le massime precipitazioni in 24 ore, pari a 72,5 mm/g, si verificarono nel settembre del 1949.

Per Oristano (12 m slm) il valore delle precipitazioni medie annue è di 581,8 mm/a. Per questa stazione il mese più piovoso risulta quello di dicembre con media mensile di 93,6 mm/m, mentre quello più secco risulta luglio con 2,0 mm/m di precipitazioni. Il massimo pluviometrico nelle 24 ore, pari a 74,0 mm di pioggia in un giorno, è stato registrato nell'ottobre giugno del 1959.

Nella figura è riportato il grafico dell'andamento delle precipitazioni medie annue. Nella tabella sono riportate le caratteristiche delle precipitazioni misurate per le stazioni ricadenti nell'area vasta e l'analisi della pioggia probabile nelle 24 h con differenti tempi di ritorno.

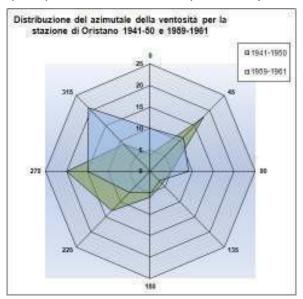
Nel complesso l'area esaminata mostra un regime pluviometrico con una piovosità di bassa entità, concentrata nel periodo invernale, con estati rigorosamente asciutte, solo qualche volta interessate da eventi temporaleschi anche eccezionali. La primavera è generalmente scarsa di apporti mentre l'autunno è sovente più ricco dell'inverno. Buona parte degli eventi meteorici di rilievo ha avuto luogo in periodo autunnale e precisamente tra settembre e dicembre, con episodi notevoli anche nei primi 2 mesi dell'anno.

Le precipitazioni nevose sono rare.

Per tutte le stazioni considerate le precipitazioni sono generalmente concentrate nel periodo autunno-invernale ed il maggior quantitativo di pioggia cade nel mese di dicembre. Il periodo estivo è caratterizzato per tutte le stazioni da una accentuata aridità, con anni nei quali il periodo secco si prolunga anche per otto mesi. Nel periodo invernale, nel mese di gennaio e talvolta di febbraio, si possono verificare alcune settimane di tempo secco, le cosiddette secche di gennaio.

La media annua di giorni piovosi varia tra 61 ed 70 gg.

Il regime pluviometrico risulta estremamente irregolare con forti variazioni tra anno ed anno. All'andamento tipico mediterraneo ogni tanto si alterna quello mediterraneo di transizione caratterizzato da due periodi piovosi, uno in inverno ed l'altro in primavera. Nell'arco di tempo


coperto da osservazioni si notano alcune serie di anni particolarmente siccitosi, così come non sono infrequenti eventi pluviometrici di portata straordinaria.

Si può notare che il fattore che influenza principalmente il regime pluviometrico è costituito dall'esposizione dell'area.

5.4 REGIME ANEMOMETRICO

Per la caratterizzazione del regime anemometrico dell'area sono stati utilizzati i dati registrati nelle stazioni di Oristano, di Capo Frasca e del Cirras (ENEL).

L'area è caratterizzata da un'elevata ventosità. I venti dominanti sono quelli provenienti dal IV quadrante (maestrale e di ponente), che spesso raggiungono e superano la velocità di 25 m/s, e quelli provenienti dal II e III quadrante (scirocco e libeccio).

		STAZ Perio	and the property	E DI C 1941-195								
	At M		N	NE	E	SE	5	SW	W	NW	Calme	
Oristano	28	941-195	4	18	5	- 4	- 6	13	20	9	21	100
Oristano	19	959-196	10	11	9	3.	6	7.	15	21	193	100

Fig. Grafico - Distribuzione dell'intensità del vento misurata presso la stazione di Oristano

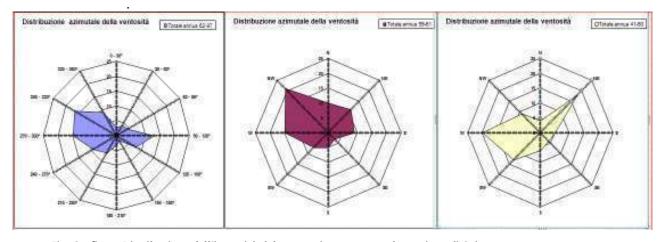


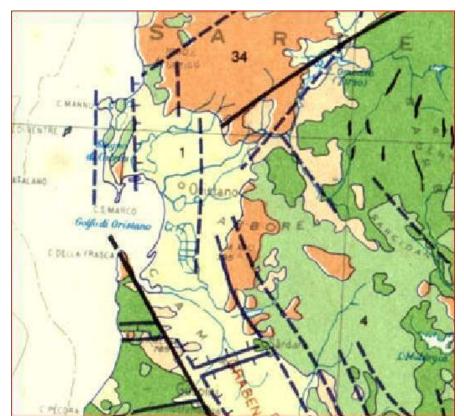
Fig. Grafico - Distribuzione dell'intensità del vento misurata presso la stazione di Oristano

Nella stazione di Oristano il vento dominante è rappresentato dal ponente. Questo vento, con il 20% della frequenza, raggiunge sovente velocità intorno ai 25 m/s. Il grecale mostra una

frequenza del 15% con velocità generalmente non superiori ai 25 m/s, ed il maestrale con una frequenza intorno al 13%, raggiunge e supera la velocità di 25 m/s. Il vento meno frequente è lo scirocco, che però talvolta raggiunge e supera i 25 m/s. Le giornate di calma di vento rappresentano il 20,42% del totale.

Per la stazione di Oristano sono disponibili i dati in tre diversi archi temporal (69-97, 59-61, 41-50) e curiosamente caratteristici. Per l'arco temporale più vecchio disponibile è possibile vedere una dominanza delle direzioni da W e da NE, mente negli anni successivi le misurazioni mostrano dominare il NW e secondariamente E e NE.

L'elaborazione ed analisi dei dati anemometrici suddetti mostrano una prevalenza dei venti provenienti da NO ed O. I venti provenienti da NO spesso raggiungono e superano i 28 m/s di velocità al suolo. Tutti gli altri venti sono mediamente molto meno frequenti.


L'area è caratterizzata da un'elevata ventosità, soprattutto nella parte sommitale dei rilievi, ben esposti a tutti i venti, ed in particolare ai venti del IV quadrante. I mesi più ventosi sono generalmente quelli invernali.

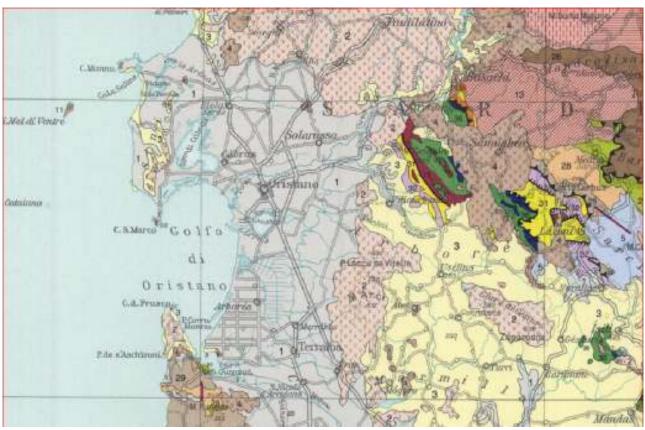
6 INQUADRAMENTO GEOLOGICO STRUTTURALE E STRATIGRAFICO

L'area in esame costituisce una piccola porzione della fascia costiera del Golfo di Oristano, geologicamente e strutturalmente parte integrante della pianura del Campidano, che si estende per circa 115 km, con direzione NO-SE, dal Golfo di Cagliari al Golfo di Oristano.

Per meglio comprendere l'attuale assetto geologico e morfologico dell'area in studio si riportano i principali eventi geologico-strutturali che hanno portato alla formazione ed all'evoluzione del sistema graben – horst del Campidano.

Gli eventi geologici responsabili dell'attuale assetto geo-strutturale del settore in esame si possono far iniziare nel Terziario, durante l'Oligocene medio, quando, per la collisione della placca africana con quella europea, si ebbe la rototraslazione del blocco sardo-corso e l'apertura del rift sardo, con la suddivisione del basamento cristallino paleozoico, strutturalmente già evoluto, in due horst(Tapponier, 1977). L'horst occidentale fu smembrato in blocchi, disposti in senso meridiano, rappresentati da: la Nurra, i Monti di Flumentorgiu, l'Arburese-Iglesiente ed il Sulcis di grandi dimensioni, ed altri come il sud-Algherese e l'isola di Mal di Ventre, di dimensioni assai ridotte.

L'horst orientale, apparentemente più omogeneo, è costituito dal complesso granitico nord Sardegna, dalla zona assiale della catena ercinica Sardegna della orientale, dalla zona a falde della catena ercinica della Sardegna centrale dall'intrusione ercinica del Sarrabus.

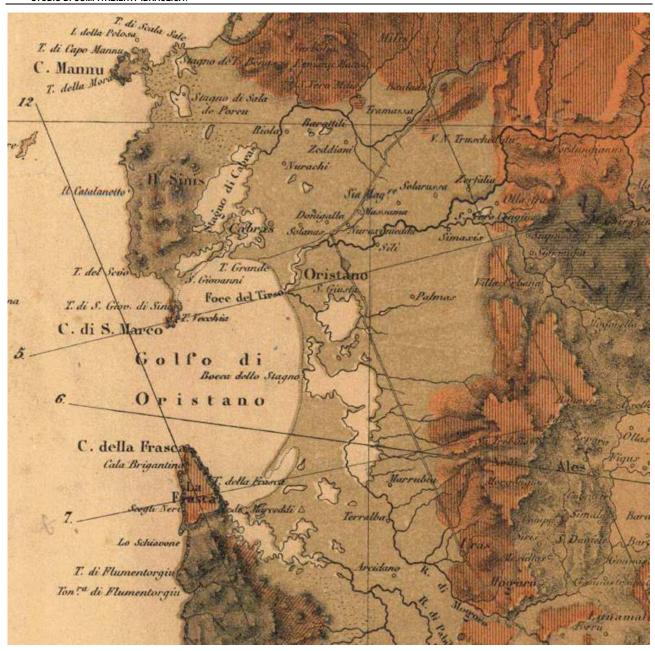

Stralcio dallo Schema geostrutturale della Sardegna – Fonte Carmignani et alii (1982)

La formazione della "fossa sarda", che si sviluppava dal Golfo di Cagliari a quello dell'Asinara con una larghezza di circa 40 km, fu seguita da un'intensa attività vulcanica

sintettonica, che portò al parziale riempimento della stessa, come testimoniano le estese coperture vulcaniche della Planargia, del Bosano, del Montiferru, quelle carotate nel Campidano e quelle presenti ad est della dorsale del Grighini.

La subsidenza all'interno della fossa fu attiva per un lungo periodo, cosicché il mare miocenico vi penetrò, come testimoniano i numerosi affioramenti di sedimenti marini miocenici nel Meilogu-Logudoro a nord e lungo i bordi della fossa campidanese a sud, nella Marmilla e nella Trexenta ad est e di Funtanazza e del Cixerri ad ovest.

Nel settore meridionale della "fossa sarda" la serie miocenica, ricostruita sulla base dei risultati di perforazioni profonde eseguite nel Campidano e delle indagini di superficie, presenta uno spessore di circa 1500 m, di cui circa 300-400 m di ambiente continentale ed il restante di ambiente marino.


Stralcio Carta Tettonica d'Italia

In relazione ai movimenti tettonici che hanno generato il bacino sedimentario oligo-miocenico i materiali che si rinvengono nella fossa sono stati suddivisi da Cherchi e Montardet (1982, 1984) in depositi pre-rift, syn-rift e post-rift, in funzione della loro posizione rispetto all'evoluzione della fossa stessa.

I depositi pre-rift, costituiti dai depositi detritici continentali eocenici della formazione del Cixerri, si rinvengono nella parte basale della fossa e costituiscono i termini più antichi carotati nel Campidano Sono classificati come syn-rift oltre ai prodotti del ciclo vulcanico oligo-miocenico ad affinita calco-alcalina auct., i sedimenti continentali della formazione di Ussana, i sedimenti in facies marina delle Arenarie di Gesturi, in eteropia con i Calcari di Isili e con le Marne di Ales (Cattiano sup.) ed il successivo complesso vulcano-sedimentario della formazione della Marmilla (Aquitaniano) in eteropia con i Calcari di Villagreca.

I depositi post-rift, rappresentati dalla sequenza sedimentaria marina costituita alla base dalle Marne di Gesturi (Burdigaliano medio e sup.-Langhiano sommitale), che poggiano sulla formazione della Marmilla, di età Burdigaliano inf., dalle argille di Fangario (Langhiano sup-Serravalliano inf.), dalle arenarie di Pirri (Serravalliano) seguite dal Calcare di Cagliari suddiviso in tre subunità e datato Serravalliano-Messiniani inf., si sono formati al termine dell'attività tettonica che provocò l'apertura della fossa, quando il mare miocenico entrò stabilmente nella stessa.

Le tensioni tettoniche responsabili del sistema di rift, datate Oligocene medio-Aquitaniano, hanno lasciato testimonianza degli stress sia nel sedimentario che nel vulcanico con direzione prevalente N 80° E. Questa fase è stata seguita da una fase tettonica di età burdigaliana, probabilmente dovuta alla collisione fra il blocco sardo-corso e la placca Apuliana, testimoniata dalle lineazioni N 40° E, mentre la direzioni N 140°, riconoscibile in numerosi affioramenti, testimoniano la fase tettonica compressiva messiniana, responsabile del contatto discordante fra i sedimenti marini messiniani e quelli marini pliocenici.


La geologia dell'area vasta sulla cartografia storica (La Marmora 1864 et alii)

Nel Messiniano in seguito alla crisi di salinità del Mediterraneo occidentale, il mare miocenico si ritirò e le aree precedentemente sommerse diventarono sede di un'intensa attività erosiva, come evidenziato da una netta superficie di erosione che tronca la seguenza stratigrafica miocenica.

Durante la fase di regressione si passa gradualmente da un ambiente di mare aperto ad un ambiente di mare ristretto. Questi passaggi sono testimoniati nella penisola del Sinis, dove si rinvengono depositi evaporitici messiniani.

Nel nuovo ambiente continentale, nelle aree più depresse vengono deposti i detriti asportati dagli atmosferili nelle aree altimetricamente più elevate. Si formano così i sedimenti continentali pliocenici della Formazione di Samassi.

Nel Plio-Quaternario una nuova fase tettonica a carettere distensivo, collegata con l'origine del bacino bacino oceanico del Tirreno centro-meridionale, interessa l'isola, ed è responsabile dell'aperura del graben campidanese, che si sovrappone al settore centro-meridionale della fossa sarda, attraverso il ringiovanimento, lungo i bordi paleozoici, di una serie di faglie parallele con direzione NNO-SSE.

Mappa – L'area sulla Carta Geologica d'Italia 1:100.000

A questa fase tettonica è inoltre legata un nuova fase vulcanica, a carattere alcalino, alla quale sono legate le manifestazioni vulcaniche responsabili della formazione dei grandi edifici vulcanici della Sardegna (Montiferru e Monte Arci) e della messa in posto dei basalti di piattaforma. Questi ultimi, spesso in evidente inversione di rilievo, andarono a colmare i bassi morfologici, ricoprendo i depositi detritici post-miocenici.

Lungo i bordi del graben questa situazione innesca un consistente regime erosivo che in parte smantella i sedimenti miocenici.

Dal Pleistocene medio la Sardegna acquista una certa stabilità tettonica. Le oscillazioni climatiche del Quaternario, a partire dal Pleistocene, e il susseguirsi delle variazioni eustatiche, generano nell'Isola degli evidenti mutamenti morfologici.

Nell'Olocene, infine, assistiamo alla deposizione di sedimenti (alluvioni, depositi litorali, dune etc.) che conferiscono alla Sardegna l'attuale aspetto morfologico.

La successiva ripresa dell'attività erosiva, guidata dalle discontinuità tettoniche, che ha agito con maggior intensità sulle litologie più erodibili, determinò la produzione di ingenti quantità di materiale detritico. Il materiale eroso, trasportato a valle dalle acque superficiali, incanalate e non, venne depositato nella fossa del Campidano fino a colmarla, con la formazione di potenti depositi detritici.

Nel Campidano la continua subsidenza e la mancanza di pendenze adeguate, ha localmente consentito il permanere di vaste zone depresse, come per esempio lo stagno di Sanluri e le l'anello "lacustre" attorno al Golfo di Oristano e quello attorno a quello di Cagliari.

La pianura si affaccia sul Golfo di Oristano con una costa bassa e sabbiosa ad arco, che termina con due promontori alti e rocciosi rappresentati da Capo Frasca verso SO e Capo San Marco verso NO. Si tratta di una spiaggia di considerevoli dimensioni, sia per larghezza sia per lunghezza, interrotta localmente dalla foce del Tirso e dalle bocche a mare delle lagune costiere. Proprio agli apporti del Tirso, rappresentati prevalentemente da sabbie e ghiaie quarzosofeldspatiche debolmente limose, ridistribuiti dalle correnti litoranee e dal moto ondoso, si deve l'origine della spiaggia.

Una serie di stagni e paludi, oggi per lo più bonificati, e campi dunali di retrospiaggia, per buona parte rimboschiti a pino, evidenziano il passaggio tra la piana costiera e la spiaggia.

La geologia dell'area vasta con in grigio – celeste le aree limoso - palustri e alluvionali recenti (Carmignani et alii)

I corpi idrici, relitti di bracci fluviali e meandri abbandonati del Tirso e dei suoi affluenti, oggi in parte bonificati, ed i terrazzi fluviali testimoniano le fasi evolutive dei corsi d'acqua, mentre le lagune costiere e gli stagni retrodunali testimoniano le diverse fasi evolutive della linea di costa, entrambe legate a periodi di sedimentazione alternati a fasi di erosione, conseguenti sia a fenomeni di subsidenza tettonica sia al glacio-eustatismo quaternario.

5.2 Stratigrafia del Campidano di Oristano

Il complesso plio-quaternario, che colma il graben campidanese, potente da alcune decine di metri fino a circa 800 metri, è costituito da sedimenti continentali, per lo più appartenenti alla Formazione di Samassi, sui quali poggiano potenti depositi alluvionali, lacustri e lagunari pleistocenici, con intercalate lave basaltiche del ciclo vulcanico alcalino, seguiti da depositi marini e lagunari flandriani-versiliani. I depositi marini quaternari, rappresentati da depositi di ambiente freddo, e da depositi tirreniani tipici, sono presenti nelle sole fasce costiere.

Il sottosuolo è caratterizzato dall'alternarsi di strati più o meno potenti, talora lentiformi, di ghiaie ciottoloso-sabbiose, di argille, argille limose e sabbie argillo-limose. Localmente sono presenti anche dei livelli torbosi.

I singoli orizzonti, spesso lentiformi, presentano spessori molto variabili da luogo a luogo, rendendo difficili le correlazioni stratigrafiche.

Il basamento della serie plio-quaternaria è rappresentato dalle formazioni vulcaniche e sedimentarie oligo-mioceniche, che affiorano localmente nella fascia pedemontana, lungo i bordi della fossa, dove si rinvengono anche terreni cristallini paleozoici.

La sequenza stratigrafica del Campidano di Oristano è stata ricostruita sulla base dei risultati di due perforazioni profonde eseguite nei primi anni '60 per una ricerca di idrocarburi promossa dalla Regione Autonoma della Sardegna.

Il primo sondaggio eseguito presso Case Sassu (tra lo Stagno di S'Ena Arrubia e l'ex stagno di Sassu), raggiunse la profondità di 1802 m ed attraversò i seguenti terreni:

profondit	descrizione	età
àm		
0.00 -	Sabbie limi argillosi, con livelli di conchiglie marine e di stagno	Quatern
33.00		ario
33.00-	Argille, limi e scarse sabbie ciottolose in facies alluvionale e palustre	Quatern
94.00		ario
94.00-	Argille grigiastre, limi e rare sabbie in facies prevalentemente	Pliocen
304.00	alluvionale, con resti di gasteropodi d'acqua dolce e di piante	e sup
	palustri	
304.00-	Basalto, grigio scuro, compatto, in colate	Pliocen
310.00		e (?)
310.00-	"Formazione di Samassi", costituita da alternanze di limi marnoso-	Pliocen
730.00	calcarei, talora sabbiosi, conglomerati a ciottoli di marne mioceniche	е
	prevalenti, argille e marne ad abbondanti foraminiferi miocenici e	medio-
	pliocenici rimaneggiati, in facies fluvio-torrentizia e lacustre	superior
	subordinata	е
730.00-	Marne arenacee a foraminiferi e resti di molluschi marini	Pliocen
820.00		e inf.
820.00-	Complesso sabbioso-ciottoloso, argillo-marnoso e sabbioso-marnoso	Messini
870.00	sterile	ano (?)
870.00-	Alternanze di marne ed arenarie fini di ambiente di mare aperto, a	Tortoni
1430.00	foraminiferi e lamellibranchi	ano-
		Burdigal
		iano
1430.00-	Marne prevalentemente arenacee ed arenarie con intercalazioni	Burdigal
1802.00	tufacee, piroclastiche e probabilmente laviche, andesitico-basaltico,	iano-
	talora in giacitura caotica	Aquitani
		ano

Il secondo sondaggio eseguito nella periferia sud-occidentale dell'abitato di Riola raggiunse il 1700 m di profondità ed attraversò i seguenti terreni:

profondit	descrizione	età
àm		
0.00-	Sabbie dunari, sabbie e limi a conchiglie marine e di stagno,	Quatern
20.00	ricoprenti ghiaie alluvionali prevalentemente quarzose	ario
20.00-	Argille e limi sabbiosi con intercalazioni ghiaiose, in facies	Quatern
218.00	alluvionale prevalente e palustre	ario
		Pliocen
		e sup
218.00-	Basalto, grigio scuro, compatto, in colate	Pliocen
243.00		e (?)
243.00-	"Formazione di Samassi", costituita da alternanze di marne	Pliocen
671.00	arenaceo-calcaree, conglomerati a ciottoli di marne e arenarie	e
	mioceniche prevalenti, sabbie, argille torbose, limi, ad abbondanti	medio-
	foraminiferi miocenici e pliocenici rimaneggiati, in facies fluvio-	superior
	torrentizia e lacustre subordinata	e
671.00-	Marne argillose ed arenacee, a foraminiferi e resti di lamellibranchi	Pliocen
729.00	marini	e inf.
729.00-	Marne e sabbie talora grossolane, in facies marina e	Messini
856.00	dubitativamente continentali nella parte alta	ano (?)
		Miocen
		e sup
		medio
		(?)
856.00-	Ignimbriti, andesiti e tufi associati	Miocen
1298.00		e inf.
1298.00-	Tufiti con intercalati livelli marini ad ostree	Pliocen
1308.00		e sup
1308.00-	Andesiti, Ignimbriti e tufi associati, talora con filoni e vene di	Miocen
1700.00	calcedonio	e inf. –
		Oligoce
		ne sup

Dalla lettura delle due stratigrafie risulta che, nel sottosuolo, intercalati ai depositi detritici, si incontrano una serie di colate basaltiche plio-quaternarie, omologhe a quelle di Capo Frasca, di Capo San Marco e del Sinis.

Queste colate, disposte a gradinate a causa di una serie di faglie, sono situate ad una profondità crescente verso sud. La colata più superficiale, attraversata da numerose perforazioni per acqua effettuate poco a monte dell'abitato di Solarussa, si trova ad una profondità di alcune decine di metri, ricoperta da depositi alluvionali, e poggia a sua volta su altri sedimenti alluvionali di età precedente. Nelle perforazioni effettuate dall'AGIP, le colate basaltiche sono ribassate alla profondità di circa 218 metri presso Riola e di 304 metri presso Sassu.

In superficie nei settori compresi tra Zerfaliu, Solarussa-Siamaggiore Nuraxinieddu, Cabras, Solanas, Donigala, Zeddiani e la fascia pedemontana del Montiferru a nord del Tirso e tra Ollastra, Simaxis, Oristano, Santa Giusta, Palmas ed Uras a sud del Tirso affiorano i depositi alluvionali antichi, composti da livelli di ciottoli e ghiaie poligeniche ed eterometriche, in matrice sabbio-limo-argillosa ferrettizzata, fortemente addensati e spesso terrazzati.

Lungo le fasce pedemontane si rinvengono depositi di conoide e di glaicis, molto simili alle alluvioni antiche del Tirso e presumibilmente ad esse coevi, ma più ricchi in elementi vulcanici, depositati dalle acque dei fiumi e torrenti provenienti dai massicci vulcanici del Montiferru e dell'Arci e dal massiccio paleozoico del Monte Grighine.

Nel settore compreso tra Donigala, Nurachi e Cabras sino a Riola e Baratili si trovano depositi alluvionali spianati, formatisi prevalentemente dal rimaneggiamento delle alluvioni antiche, con arricchimenti più francamente argillosi, le cosiddette alluvioni medie.

Anche in questi depositi, ubicati più lontano dal corso attuale del Tirso e dei suoi affluenti, si possono riconoscere delle superfici terrazzate, raccordate con le alluvioni recenti da ripe di erosione fluviale. A sud di Santa Giusta e nel settore compreso tra Terralba e S. Nicolò Arcidano, questi depositi sono ricoperti da resti di antiche dune presumibilmente pre-tirreniane.

Lungo i corsi d'acqua affiorano le alluvioni recenti, costituite da sabbie quarzose fini e ghiaie e ciottoli eterometrici e poligenici. Su questi depositi si sono evoluti dei suoli, ad alta potenzialità per uso agricolo, conosciuti nell'area come terreni di "Bennaxi", mentre sui terrazzi più antichi si sono evoluti dei suoli meno fertili dei precedenti, denominati terreni di "Gregori".

All'interno delle alluvioni recenti si riconoscono, in corrispondenza di depressioni create dal divagare dei corsi d'acqua prima di raggiungere il mare, depositi palustri. Queste zone, oggi bonificate, costituivano le aree paludose del Campidano.

7 INQUADRAMENTO GEOMORFOLOGICO

L'assetto morfologico attuale è il risultato di processi fluviali e secondariamente eolici che, attivi durante tutto il Quaternario, in condizioni climatiche differenti dalle attuali, hanno dato luogo a ripe di erosione fluviale, meandri, terrazzi fluviali, coni di deiezione e campi dunali. Si rinvengono pertanto forme di accumulo e di erosione tipiche della dinamica fluviale e di quella eolica. La costa, bassa e sabbiosa è invece il risultato dell'azione modellante del mare.

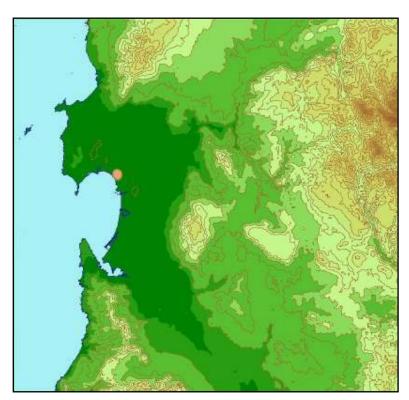
Il Campidano di Oristano è attraversato dal tratto terminale del fiume Tirso e dei suoi affluenti, che hanno avuto un ruolo molto importante, con la loro azione di erosione, trasporto e sedimentazione, nella formazione della piana e nel suo successivo modellamento.

La vasta superficie, da sub-pianeggiante ad ondulata, modellata nei potenti depositi detritici plio-quaternari di varia origine, degrada dolcemente verso il mare. Essa è incisa dagli alvei del Tirso degli altri fiumi gravitanti nell'area, che presentano reticolo idrografico ad andamento da rettilineo a meandriforme, localmente anastomizzato. La piana è attraversata anche da una fitta rete di canali artificiali, realizzati dagli anni '30 fino ad oggi.

Superfici terrazzate, formatesi in diversi periodi ed in condizioni climatiche differenti dalle attuali, stagni, piccole paludi, lagune costiere e vasti campi dunali, interrompono localmente la monotonia del paesaggio pianeggiante.

Nella pianura si distinguono le seguenti unità geomorfologiche:

• Le alluvioni antiche terrazzate


Le alluvioni antiche terrazzate, substrato di tutta la zona, consistono in depositi sabbiosociottolosi, sedimentati nel Plio-Quaternario dal paleo-Tirso e dai fiumi minori che attraversano la pianura.

Questi depositi un tempo costituivano la gran parte della pianura del Campidano. La successiva opera di modellamento , sono stati parzialmente smantellati e modellati dalla successiva erosione fluviale tanto che oggi si presentano generalmente terrazzati. I terrazzi fluviali, debolmente ondulati, sono separati da piccole vallecole nelle quali si instaura una rete idrografica attiva solo in occasione di forti precipitazioni. Essi sono caratterizzati da bordi generalmente netti e sono raccordati ai terreni più recenti da scarpate di erosione fluviale, oramai inattive, più o meno acclivi, dove agiscono il dilavamento diffuso ed il ruscellamento incanalato, che localmente ha prodotto piccoli solchi di erosione. I terrazzi più ampi si trovano tra Solarussa-Siamaggiore e la Carlo Felice, dove raggiungono altezze intorno ai 40 metri slmm e nel settore prospiciente il Monte Arci.

Le conoidi alluvionali ed i glacis

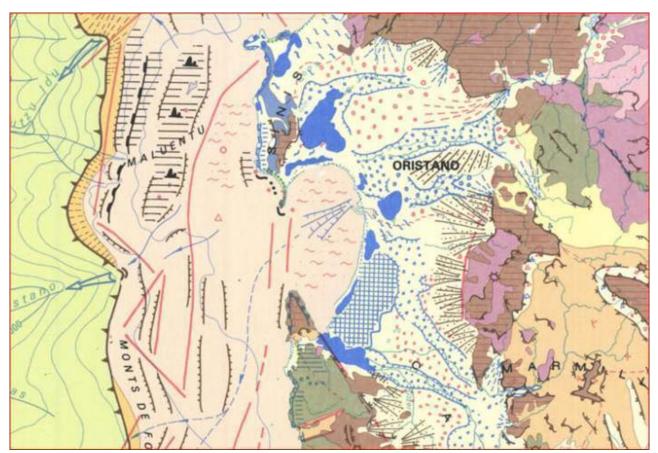
Le conoidi alluvionali ed i glacis sono localizzati nella fascia pedemontana dei rilievi che delimitano la pianura. I depositi di conoide, caratteristici per la loro forma a ventaglio, sono il risultato della deposizione di ingenti quantità di materiale detritico trasportato a valle dalle acque incanalate provenienti dai rilievi al loro sbocco in pianura, per il brusco decremento della velocità dell'acqua. Nel settore di raccordo tra l'Arci e la pianura prevalgono i glacis detritici, che devono la loro origine all'arretramento parallelo dei versanti rocciosi, per erosione areale. Questi depositi detritici, così come le alluvioni antiche, sono stati successivamente incisi e localmente terrazzati.

Le alluvioni medie

Sono costituite prevalentemente dal rimaneggiamento e rideposizione del materiale detritico asportato, dall'azione erosiva dei fiumi, dalle alluvioni antiche, modificato con il deposito di termini più francamente argillosi. Esse danno luogo a superfici terrazzate, raccordate con le alluvioni recenti da modeste ripe di erosione fluviale, evidenziate da piccole rotture di pendio.

Fig. Mappa – L'andamento dell'altimetria nell'area vasta circostante Oristano (in arancio)

Le alluvioni recenti


I depositi più recenti, i cosiddetti terreni di "Bennaxi", si trovano lungo le rive del Tirso, del Mare Foghe, del Mogoro e dei loro affluenti. Questi terreni costituiscono delle ampie superfici sub-pianeggianti, debolmente degradanti verso ovest, più o meno incise dall'azione del fiume che le attraversa. Lungo gli alvei si possono riconoscere delle piccole ripe di erosione fluviale. Queste alluvioni costituiscono i terrazzi più recenti.

• Le aree palustri e delle paludi bonificate

All'interno delle alluvioni recenti si riconoscono delle aree depresse, create dal divagare dei corsi d'acqua nella pianura prima che raggiungessero lo sbocco a mare. Queste zone, oggi bonificate, costituivano le aree paludose del Campidano. Le paludi sono numerose e punteggiano la vasta zona tra lo stagno di Cabras, il Mare Foghe e il Tirso, la zona della bonifica di Sassu ed ancora la piana di Arborea.

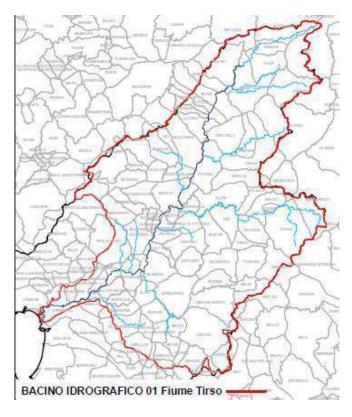
• Il sistema costiero e la foce del Tirso

Questo sistema è formato da una costa bassa sabbiosa, che termina con gli alti promontori rocciosi di Capo San Marco e Capo Frasca. Esso è caratterizzato da vasti campi dunali di retrospiaggia e da stagni e lagune costiere. La spiaggia sabbiosa ad arco borda la pianura con continuità, interrotta solo localmente dalla foce del Tirso e dalle bocche a mare delle lagune costiere. Essa è il risultato della ridistribuzione ed accumulo dei materiali detritici trasportati dal Tirso e dagli altri fiumi che sfociano nel golfo, operata nel tempo dal moto ondoso e delle correnti litoranee. La spiaggia mostra un profilo longitudinale regolare a pendenza media, con la berma di tempesta evidente solo dopo le forti mareggiate.

Stralcio della Carta Geomorfologica della Sardegna marina e Continentale – Fonte A. Ulzega et alii (1988)

Le spiagge del settore settentrionale sono in persistente avanzamento dalla seconda metà del secolo scorso, ad eccezione di piccoli settori localizzati, di contro quelle del settore centrale e meridionale sono in erosione. Un cordone dunale, delimita l'avanspiaggia dalla retrospiaggia, dove i venti dominanti hanno formato campi dunali di dimensioni variabili, oggi quasi interamente stabilizzati da impianti a pino, come a Torregrande e ad Arborea. A ridosso dei cordoni dunali spesso si rinvengono piccole depressioni, che nel periodo delle piogge danno luogo a piccole paludi e stagni temporanei. Bacini idrici di dimensioni assai più grandi sono invece le lagune, più note come stagni, che nell'oristanese caratterizzano il passaggio fra l'ambiente costiero e la pianura. Esse si sono formate per accrescimento successivo di barre sabbiose, ad opera del mare e subordinatamente del vento, che, delimitando alcuni settori del mare del golfo, hanno dato luogo a questi bacini idrici salmastri. Tra queste le più importanti sono quella di Cabras e quella di Santa Giusta.

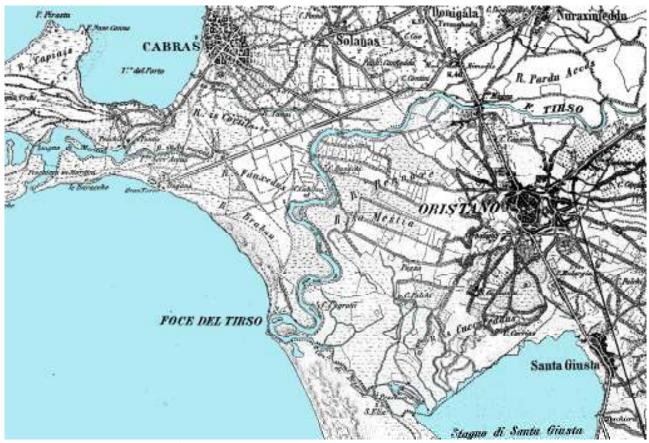
Nel contesto della pianura l'attività antropica è attualmente il processo morfogenetico più intenso. Gli insediamenti urbani, rurali e le infrastrutture, oltre alle attività economiche, stanno modificando velocemente l'assetto morfologico dell'area. Vaste porzioni di pianura sono state profondamente scavate per il prelievo di materiali per inerti, con la creazione di ampie e profonde cave che spesso, intercettando la falda freatica, si trasformano in laghetti. Altre sono state spianate a fini agricoli, rendendo spesso difficile il riconoscimento delle forme originarie dell'area.


Nel settore costiero, ugualmente fortemente antropizzato, i processi di dinamica costiera ed eolica sono sempre attivi, anche se spesso subiscono le interferenze determinate dell'attività dell'uomo.

8 INQUADRAMENTO IDROGEOLOGICO

8.1 ACQUE SUPERFICIALI

La zona dell'intervento ricade al margine ovest di Oristano, posto a sud rispetto al corso del fiume Tirso, il fiume più importante della Sardegna, per lunghezza ed ampiezza del bacino, che domina e caratterizza tutto l'assetto idrologico ed idraulico del settore.



Bacino idrografico del fiume dell'U.I.O n 2 - Tirso

La circolazione idrica superficiale è pertanto dominata dalla presenza del fiume e da numerosi canali di scolo a servizio della rete di irrigazione del Consorzio di Bonifica dell'Oristanese (CBO).

Il bacino idrografico del Tirso, nella suddivisione del Bacino Unico della Sardegna in sottobacini, costituisce l'U.IO n. 2, dove l'unico corso d'acqua principale del bacino è il Tirso.

Mappa – Il reticolo idrografico tra Santa Giusta e Cabras prima delle modificazioni e arginature

Il fiume Tirso ha ha origine nell'altopiano di Buddusò tra i rilievi di Monte Longos (925 m slm) e Sa Ianna Bassa (955 m slm) e dopo aver attraversato la Sardegna centrale con andamento sfocia nel golfo di Oristano tra lo stagno di Santa Giusta e quello di Cabras, ricoprendo una superficie di circa 3.287 kmg

Nel settore in esame il sistema idraulico locale è rappresentato dai canali di scolo del sistema di infrastrutturazione irrigua del CBO.

Le acque di precipitazione sono raccolte e drenate attraverso la rete di canalizzazione agricola e sono convogliate sul Rio Tanui, emissario dello Stagno di Cabras.

8.2 ACQUE SOTTERRANEE

Le indagini eseguite hanno permesso di delineare l'assetto idrogeologico dell'area d'interesse, caratterizzata da una certa complessità derivante dai differenti caratteri idraulici delle formazioni geologiche e dai rapporti geometrici e giaciturali delle stesse.

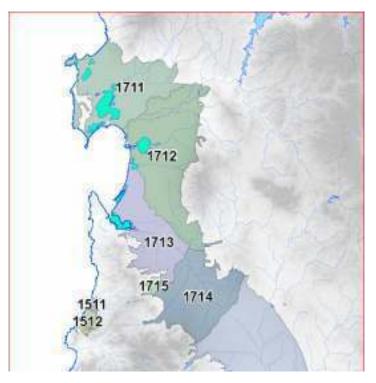
La pianura del Campidano, di chiara impostazione tettonica, è il risultato della colmata da parte di potenti depositi detritici plio-quaternari del graben campidanese.

Alle ultime fasi di sedimentazione del Pleistocene e dell'Olocene si deve la sequenza di facies fluviali, deltizie, lacustri, palustri e marine che hanno portato alla caratteristica alternanza,

sia pure variabile da luogo a luogo, di depositi ghiaiosi, sabbiosi ed argillo-limosi. In prossimità della costa non mancano locali depositi di sabbie di spiaggia ed eoliche, così come nelle aree prossime ai bordi strutturali sono frequenti conoidi alluvionali e coni di detrito.

Sulla base delle caratteristiche idrauliche delle diverse formazioni presenti nell'area in esame sono state identificate le principali unità idrogeologiche.

Nell'identificazione delle unita idrogeologiche, una prima discriminazione è stata fatta suddividendo le formazioni permeabili per porosità da quelle permeabili per fratturazione.


Successivamente, all'interno dei due singoli gruppi sono state definite, qualitativamente, le diverse classi di permeabilità, e ad esse sono state associate le litologie che, sulla base dei caratteri idraulici, ricadono generalmente in una determinata classe di permeabilità. Le litofacies, caratterizzate dallo stesso tipo di permeabilità e ricadenti nella stessa classe di permeabilità sono state aggregate per formare le unità idrogeologiche.

La unità idrogeologiche così definite sono state successivamente comparate con le tipologie dei complessi idrogeologici uniformi, previste nel Decreto Legislativo 16 marzo 2009, n. 30. "Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall'inquinamento e dal deterioramento".

Acronimo	Complessi idrogeologici
DQ	Alluvioni delle depressioni quaternarie
AV	alluvioni vallive
CA	Calcari
VU	Vulcaniti
DET	Formazioni detritiche degli altipiani plio-quaternarie
LOC	Acquiferi locali
STE	Formazioni sterili

TAB- TIPOLOGIE DI COMPLESSI IDROGEOLOGICI UNIFORMI A LIVELLO NAZIONALE PREVISTE DAL D.LGS 30/2009

Nella seguente sono riportati i corpi idrici degli acquiferi sedimentari plio-quaternari presenti nell'area vasta del Campidano di Oristano estratta dal PTA.

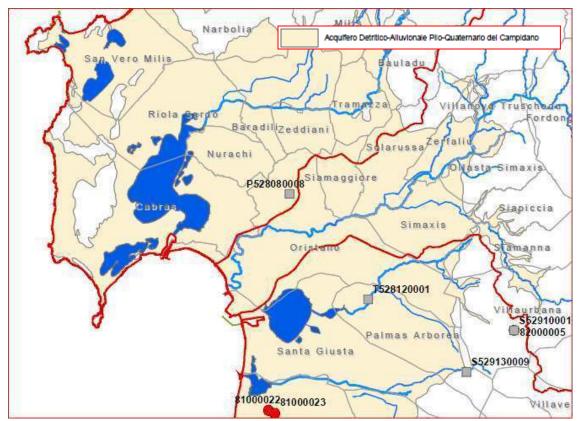
- La complessa geometria delle diverse facies non permette facili e sicure correlazioni stratigrafiche di dettaglio. La semplificazione della situazione stratigrafica porta all'individuazione di quattro unità idrogeologiche caratterizzate da diversa permeabilità:
- La formazione delle alluvioni e delle conoidi alluvionali antiche. Questi terreni mostrano nel complesso una permeabilità bassa per la presenza di potenti orizzonti conglomeratici ad abbondante matrice fine, localmente cementati ed addensati e livelli limoargillosi poco permeabili, intercalati a livelli francamente sabbiosi e ghiaiosi che possono presentare permeabilità media e localmente alta;
 - Le alluvioni medie: costituite dagli stessi terreni detritici della formazione precedente, ma meno

addensate e poco cementate presentano una permeabilità da bassa a media;

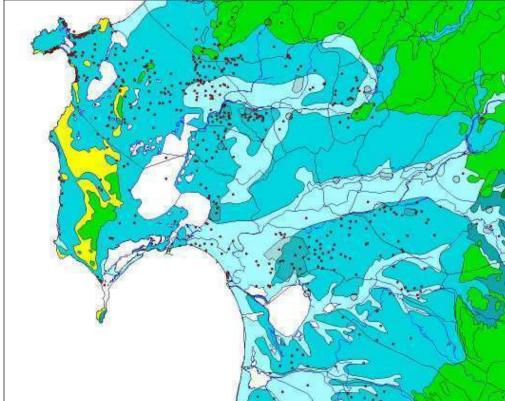
- Le alluvioni recenti, poco cementate e poco costipate, spesso ghiaiose-sabbiose, presentano nel complesso una permeabilità media che, in funzione della percentuale dei materiali fini presenti, può decrescere od aumentare consistentemente.
- I terreni argillo-limosi delle aree paludose sono caratterizzati da permeabilità da bassa a molto bassa.
- Le dune costiere e le sabbie di spiaggia sono caratterizzate da permeabilità alta per porosità.

All'interno di tali unità si rinvengono:

Acquiferi freatici e semiconfinati principali.

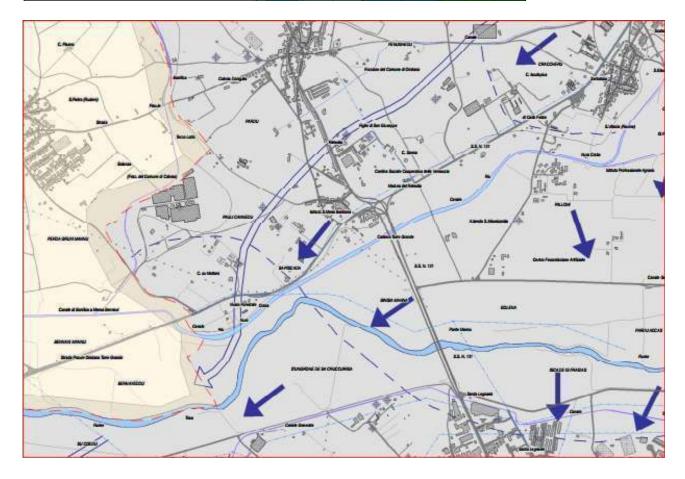

Generalmente molto superficiali si rinvengono nelle alluvioni sabbioso-ciottolose più recenti e nelle sabbie eoliche. Essi sono alimentati principalmente dal corso di subalveo dei principali corsi d'acqua che solcano il Campidano, dal drenaggio dei numerosi canali di bonifica e dalla stessa infiltrazione efficace alimentata dalle acque di irrigazione e da quelle meteoriche. Anche l'idrografia sepolta contribuisce ad alimentare queste falde acquifere. Questi acquiferi sembrano essere limitati ai depositi alluvionali suddetti, che si rinvengono in varia misura lungo gli alvei attuali e sepolti dei corsi d'acqua. Risulta, infatti, difficile, per la complessità della rete idrografica superficiale e sepolta, ipotizzare la continuità areale di tali acquiferi.

• Acquiferi freatici e semiconfinati secondari:


Si rinvengono sul bordo settentrionale del Campidano dove affiorano i terreni alluvionali e le conoidi antiche, caratterizzati da una percentuale maggiore di componente fine, addensati e localmente ben cementati e ferrettizzati e nelle alluvioni medie. Essi presentano potenza ed estensione limitata e produttività nettamente inferiore.

• Acquiferi profondi, presumibilmente multistrato

Si rinvengono nei livelli più francamente sabbioso-ghiaiosi delle alluvioni antiche, intercalati a livelli limo-argillosi a permeabilità molto bassa. Lungo il bordo settentrionale della pianura hanno sede nelle vulcaniti basaltiche interstratificate nelle alluvioni. Questi acquiferi sembrano essere comunicanti tra loro e localmente anche con gli acquiferi più superficiali per la discontinuità degli strati confinanti. Essi, spesso in pressione e talvolta anche artesiani, sono alimentati prevalentemente dalle acque superficiali che si infiltrano lungo i bordi della pianura in corrispondenza delle discontinuità strutturali. Essi, anche se i prelievi sono spesso elevati, non mostrano nel tempo variazioni di portata rilevanti e non risentono in maniera evidente dell'andamento delle precipitazioni.




I corpi idrici sotterranei degli acquiferi sedimentari plio-quaternari (fonte RAS PGDI)

formazioniLe detritiche della fascia pedemontana е alluvioni antiche sono rappresentate in celeste (permeabilità media per i terreni porosità), quaternari sciolti in celeste (permeabilità alta per porosità). In verde sono riportate le vulcaniti terziarie e quaternarie (permeabilità media e alta per fratturazione) mentre le formazioni carbonatiche sono in giallo (permeabilità per carsismo).

Mappa – La distribuzione della permeabilità e dei pozzi

Carta idrogeologica del settore in esame (Fonte PUC)

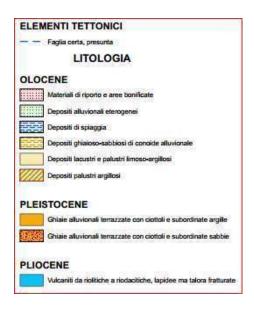
La profondità del livello idrostatico superficiale, ricostruito sui dati puntuali di una serie di pozzi misurati, segue generalmente l'andamento della superficie topografica arrivando localmente a dar luogo a delle depressioni con quote di circa -1.5 m rispetto al livello del mare.

In caso di perdurante siccità il livello freatico delle falde superficiali tende ad abbassarsi. A risentire di questo problema sono generalmente i pozzi a cassa, numerosi nei centri abitati. Non mostrano invece abbassamenti correlati alla siccità i pozzi trivellati.

Nella fascia costiera, in seguito alla scarsa ricarica, gli emungimenti eccessivi stanno provocando la graduale salinizzazione delle falde per effetto dell'ingressione di cunei salati e salmastri. Il fenomeno della salinizzazione è accentuato anche dal fatto che durante la stagione secca, in particolari condizioni di vento e di mare, cunei di acqua di mare, non contrastati dagli scarsi deflussi superficiali dei fiumi, possono risalire lungo gli alvei dei corsi d'acqua per parecchi chilometri dalla foce.

I dati acquisiti mostrano che le falde profonde confinate e semiconfinate spesso sono state messe in comunicazione tra di loro e con le falde freatiche dai numerosi pozzi perforati, rendendo tutto il sistema particolarmente vulnerabile.

Nel territorio in esame, come si evince, dalla carta idrogeologica allegata, prodotta per il PUC di Oristano, il regime delle acque sotterranee è strettamente correlato all'andamento idrologico ed idraulico del Tirso e degli altri fiumi gravitanti nell'area.


9 GEOLOGIA DELL'AREA RISTRETTA

L'area ristretta comprende le formazioni alluvionali recenti e attuali.

9.1 ALLUVIONI RECENTI E ATTUALI

Carta geologica del sito (Fonte PUC)

Formano la gran parte dell'area circostante il progetto e costituiscono il substrato delle piane alluvionali dei corsi d'acqua i cui alvei sono stati sovente modificati o sistemati da opere di bonifica.

E' il caso del sistema alveale del Tirso, parzialmente incluso all'interno dell'attuale sistema di argini onde limitare la sua naturale esondazione a discapito delle aree abitate e coltivate adiacenti il suo corso attuale.

10 INTERAZIONI CON LA PERICOLOSITÀ E CONDIZIONI DI AMMISSIBILITÀ

10.1 PAI, PSFF E PGRA

Il Piano Stralcio di Bacino per l'Assetto Idrogeologico, redatto dal coordinamento unificato e basato sulle perimetrazioni di pericolosità operate da un diverso gruppo di lavoro per ogni singolo sottobacino regionale, approvato dall'Amministrazione Regionale con Decreto della Giunta Regionale del 30.12.2004 n° 54/33e reso esecutivo con Decreto Assessoriale n° 3 del 21.02.2005, è stato pubblicato sul BURAS n° 8 del 11.03.2005.

Il Piano Stralcio delle Fasce Fluviali costituisce un approfondimento ed una integrazione necessaria al Piano di Assetto Idrogeologico (**P.A.I.**) in quanto è lo strumento per la delimitazione delle regioni fluviali funzionale a consentire, attraverso la programmazione di azioni (opere, vincoli, direttive), il conseguimento di un assetto fisico del corso d'acqua compatibile con la sicurezza idraulica, l'uso della risorsa idrica, l'uso del suolo (ai fini insediativi, agricoli ed industriali) e la salvaguardia delle componenti naturali ed ambientali.

Dopo la definizione di adeguate modalità di revisione ed approvazione, a seguito dello svolgimento delle conferenze preliminari istruttorie, il Comitato Istituzionale dell'Autorità di Bacino della Regione Sardegna, con Delibera n.1 del 03.09.2012 e con Delibera n.1 del 31.10.2012, ha adottato preliminarmente il Progetto di Piano Stralcio delle Fasce Fluviali.

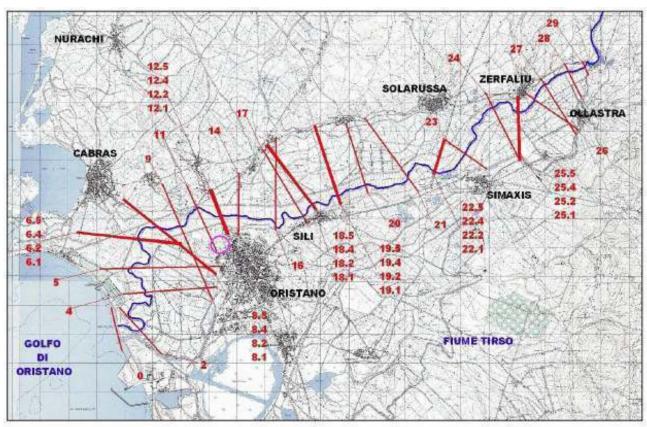
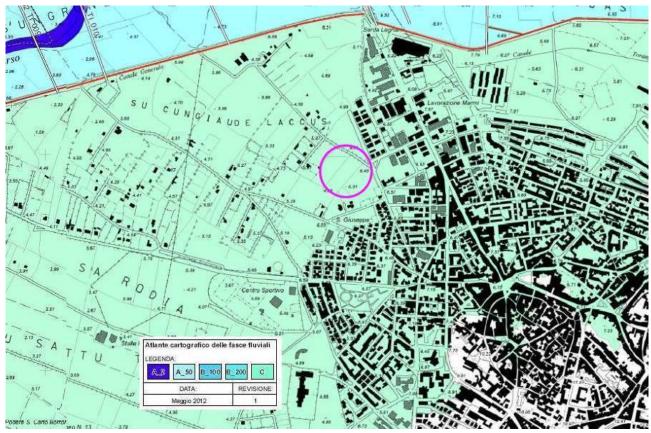



Figura 43 - Stralcio planimetrico del tratto sublacuale del fiume Tirso oggetto di studio con ubicazione delle sezioni del modello numerico.

A seguito dello svolgimento delle conferenze programmatiche, tenute nel mese di gennaio 2013, il Comitato Istituzionale dell'Autorità di Bacino della Regione Sardegna, con Delibera n.1 del 20.06.2013, ha adottato in via definitiva il Progetto di Piano Stralcio delle Fasce Fluviali.

Le modalità di approvazione del PSFF definiscono anche le modalità di valutazione dei rapporti tra le mappature di pericolosità idraulica PAI e quelle PSFF.

Il Comune di Oristano, in occasione della predisposizione degli elaborati relativi all'adeguamento del PUC al PPR e al PAI, ha operato uno studio di compatibilità ai sensi dell'Art. 8 delle N.T.A. del PAI.

Stralcio dalla tavole del PSFF che inquadra il settore in oggetto (in viola)

Successivamente, sono state pubblicate le cartografie di pericolosità idraulica del PSFF in seconda edizione, che vengono utilizzate come riferimento del presente lavoro.

Le perimetrazioni del PSFF definiscono l'area di studio con una pericolosità di livello C,, definita "morfologica" ed equiparata alla Hi1, ossia area inondabile con tempo di ritorno di 500 anni, nelle NTA del PAI

Un ulteriore elemento di esame scaturisce dalle sezioni di riferimento e dalle tabelle presenti nella predisposizione del "Progetto di Piano Stralcio delle Fasce Fluviali (**P.S.F.F.**), adottato nella versione definitiva il 20 giugno 2013.

Il piano analizza le interazioni tra il naturale deflusso delle acque di alcuni corsi d'acqua e le aree contermini ad essi, per eventi meteorici di particolare rilevanza. Conformemente a quanto già predisposto nell'ambito del PAI anche nel suddetto Piano i tempi di ritorno adottati sono 50, 100, 200, 500 anni, oltre ai due anni.

Il PGRA, redatto in attuazione della Direttiva 2007/60/CE e del D.Lgs. 23 febbraio 2010 n. 49 è stato approvato con Delibera del Comitato Istituzionale n.2 del 15.03.2016.

Il piano introduce la gestione del rischio come necessità per la tutela della vita umana, del territorio e delle attività che vi si svolgono.

In tale piano sono stati introdotte nuove mappature che sommano il contenuto degli studi ex art. 8 c 2 NTA PAI approvati al 31 dicembre 2014. Il **PGRA**, redatto in attuazione della Direttiva 2007/60/CE e del D.Lgs. 23 febbraio 2010 n. 49 è stato approvato con Delibera del Comitato Istituzionale n.2 del 15.03.2016.

Il piano introduce la gestione del rischio come necessità per la tutela della vita umana, del territorio e delle attività che vi si svolgono.

In tale piano sono stati introdotte nuove mappature che sommano il contenuto degli studi ex art. 8 c 2 NTA PAI approvati al 31 dicembre 2014.

Recentemente, sono state rese disponibili le Norme di Attuazione P.A.I. coordinate con le modifiche apportate con i Decreti del Presidente della Regione comprendenti il nuovo titolo V, datate maggio 2016 e pubblicate a 7 luglio 2013.

10.2 LA PERICOLOSITÀ IDRAULICA PER L'AREA INTERESSATA

Calando nel dettaglio le considerazioni derivanti dall'analisi dello Studio e dalle mappature associate, si individua, nel comparto sul quale grava l'intervento, una mappatura con grado di pericolosità C o meglio Hi1.

Nelle mappe di inquadramento delle sezioni è possibile rilevare come la sezione 11 sia posta in corrispondenza della posizione dell'intervento, indicato in mappa con una circonferenza viola.

L'analisi dei dati relativi alle altezze idriche raggiunte dall'acqua, ai vari tempi di ritorno ed alle sezioni nell'intorno della 11, si rileva che esistono 2 ipotesi, di cui una ipotizza la non tracimabilità degli argini e la seconda, la tracimabilità di questi.

Le tabelle relative all'ipotesi contemplante la tracimabilità, riportate di seguito, citano una quota idrica raggiunta dalla piena cinque centennale alla sezione 11 pari a 8 m nel caso di argini non tracimabili e piena contenuta al loro interno ed una quota di 5.15 m nel caso di tracimazione e distribuzione della portata in un'area superiore.

L'area di progetto è quindi posta a quota superiore ai 6 m s.l.m. e comunque contenuta all'interno della piena Hi1 o fascia C.

Tabella 57 - Grandezze idrauliche per il tratto sublacuale del fiume Tirso in corrispondenza della portata con T= 500 anni con lo scenario di "argini non tracimabili".

ID Sezione [-]	Progr. [m]	Q [m³/s]	Fondo alveo [m s.m.]	h [m s.m.]	y [m]	H [m s.m.]	v [m/s]	A [m²]	b [m]	Fr [-]
12.2	10334,27	4810,00	0,43	8,47	8,04	8,74	3,11	2197,26	614,86	0,40
12.1	10313,27	4810,00	0,43	8,45	8,02	8,73	3,13	2185,32	614,70	0,40
11	9388,72	4810,00	0,31	7,81	7,50	8,00	2,42	2494,53	778,30	0,31
9	8434,76	4810,00	0,11	7,02	6,91	7,31	3,59	2189,06	714,53	0,47
8.5	7615,17	4810,00	-1,31	6,47	7,78	6,70	2,96	2530,58	869,06	0,42
8.4	7613.67	4810,00	-1,31	6,47	7,78	6,70	2.96	2529,65	869,06	0.42

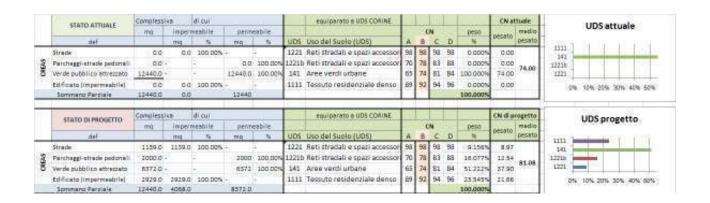
Tabella 62 - Grandezze idrauliche per il tratto sublacuale modellato del fiume Tirso in corrispondenza della portata con T = 500 anni con lo scenario di "argini tracimabili".

ID Sezione [-]	Progr. [m]	Q [m3/s]	Fondo alveo [m s.m.]	h [m s.m.]	у [m]	H [m s.m.]	v [m/s]	A [m2]	b [m]	Fr [-]
12.2	10334,27	4810,00	0,43	6,39	-5,96	6,52	2,86	3399,22	2580,39	0,45
12.1	10313,27	4810,00	0,43	6,36	-5,93	6.50	2,95	3313,63	2572,63	0,47
11	9388,72	4810,00	0,31	5,01	-4,70	(5,15)	2,56	2921,24	2759,71	0,44
9	8434,76	4810,00	0,11	4,65	-4,54	4,68	1,35	6236,04	3891,48	0,23
8.5	7615,17	4810,00	-1,31	4,41	-5,72	4,47	1,83	5289,40	4185,58	0,33
8.4	7613,67	4810,00	-1,31	4,41	-5,72	4,46	1,84	5285,81	4185,32	0,33

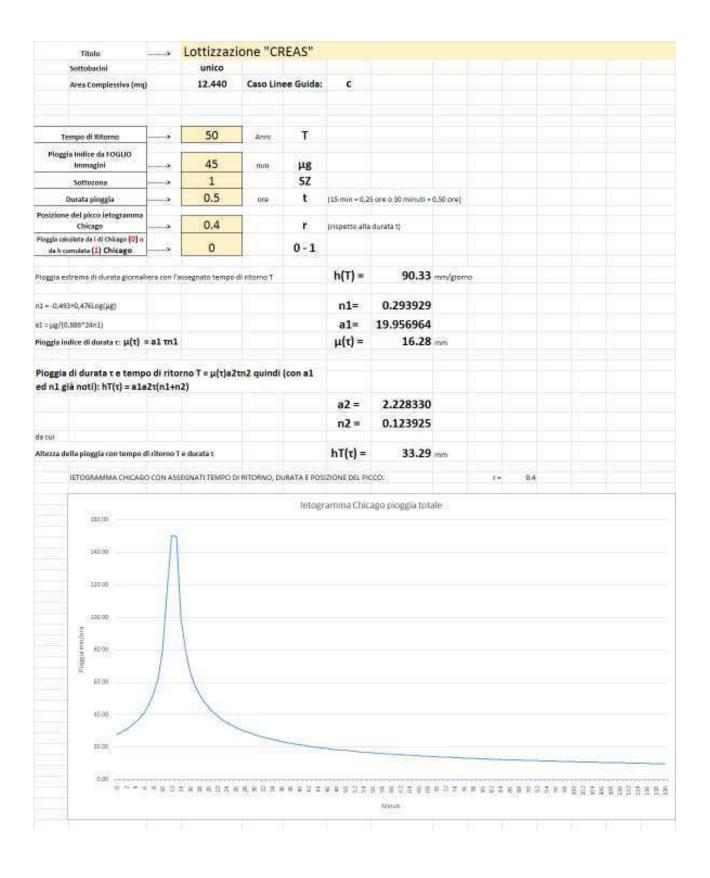
Lo studio Art. 8 c 2 del Comune pur identificando nuove aree di esondazione non muta il livello di pericolosità dell'area, che rimane proposto in Hi1.

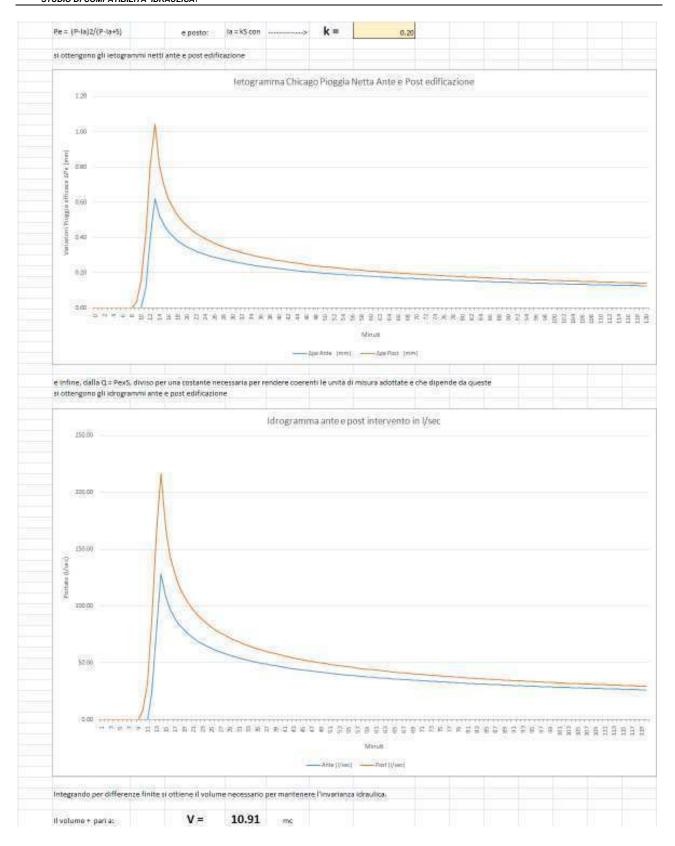
11 VERIFICA DELL'INVARIANZA IDRAULICA

La verifica dell'invarianza idraulica ci conduce, a valutare le caratteristiche attuali di uso del suolo e conseguentemente di permeabilità dei sedimi e di raffrontarli con quelli di progetto, al fine di definire la variazione del comportamento degli stessi e la necessità eventuale di compensare tale variazione attraverso opere di mitigazione.


	DATI GENERALI PIANO DI LAOTTIZZAZIONE per STUDIO di COMPATIBIL	ITA' IDRAULIO	CA
S.t	Superficie territoriale oggetto del piano di Lottizzazione	mq	12.440.00
l.t	Indice territtoriale	mc/mq	0.50
l.v	Indice volumetrico	mc/ab	150.00
V.i	Volume insediabile	mc	6.220.00
B.v	Bonus volumetrico ambiti impatto "zero"		20%
V.max	Volume massimo insediabile	mc	7.464.00
Ab	Abitanti insediabili	n°	50.00
S.f	Superficie fondiaria lotti	mq	8.909.00
S.imp.	Superficie IMPERMEABILE	mq	2.929.00
S.sem.	Superficie SEMIMPERMEABILE (viabilità + marciapiede)	mq	3.139.00
S.perm.	Superficie PERMEABILE	mq	6.372.00

Stato attuale




Stato di progetto

Nella tabella precedente sono rappresentati in modo comparatico, gli usi attuali e quelli di progetto, al fine della variazione del CN per la definizione della invarianza idraulica.

Nell'ambito di tali valutazioni, la tipologia di intervento, è configurata nelle nuove Linee Guida per la Valutazione dell'Invarianza Idraulica, come intervento di tipo B, ossia con superficie compresa tra 0,1 e 0,5 ha.

Dall'analisi del raffronto della variazione delle caratteristiche delle superfici, operato, e dalla valutazione della differenza tra le portate ed i deflussi, ex-ante ed ex post, risulta necessario mettere a punto una superficie infiltrante che dissipi la portata o il volume eccedente la situazione attuale.

I volumi risultanti in eccedenza sono comunque limitati, ed assommano a circa 1.11 di m³ con un tempo di ritorno di 50 anni.

Tali volumi possono essere gestiti nel sistema a margine dell'area verde di cessione, creando una piccola trincea drenante ove recapitare la portata e quindi il volume in eccedenza rispetto alle condizioni ex ante.

12 CONCLUSIONI

Per quanto descritto nella presente relazione e nelle opere di progetto, l'intervento proposto:

- relativamente alla Zona Hi1:
 - non costituisce ostacolo significativo per il deflusso delle acque;
- relativamente alle fasce di tutela dei corpi idrici superficiali:
 - è posto all'interno dell'area inondabile, ma all'esterno della fascia di tutela relativa all'arginatura.

L'art. 75 delle NTA del PUC cita le NTA del PAI solo relativamente alle aree a pericolosità elevata e quindi alla zona Hi2 mentre non considera, lasciandole fruibili, le aree Hi1.

ART. 75 - SOTTOZONA "H3" - SALVAGUARDIA AMBIENTALE, P.A.I.

Sono le aree di salvaguardia ambientale **(elevata pericolosità** da PAI, di bonifica ambientale, ecc.), destinate alla funzione prioritaria di tutela. In tale sottozona trovano integrale applicazione le norme relative alla sottozona H2.

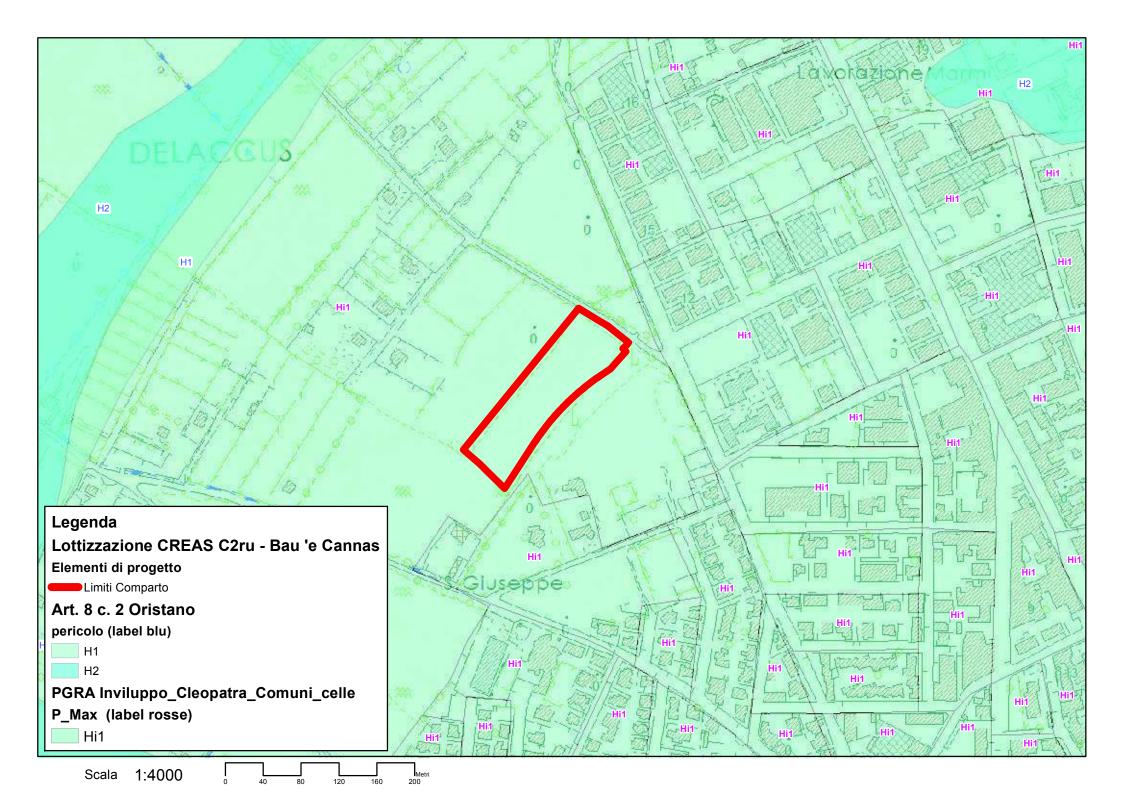
Il Progetto proposto è quindi coerente e compatibile con le NTA del PAI e del PUC, per cui, con la presente Relazione di Compatibilità Idraulica si verifica che nulla osta alla realizzazione del:

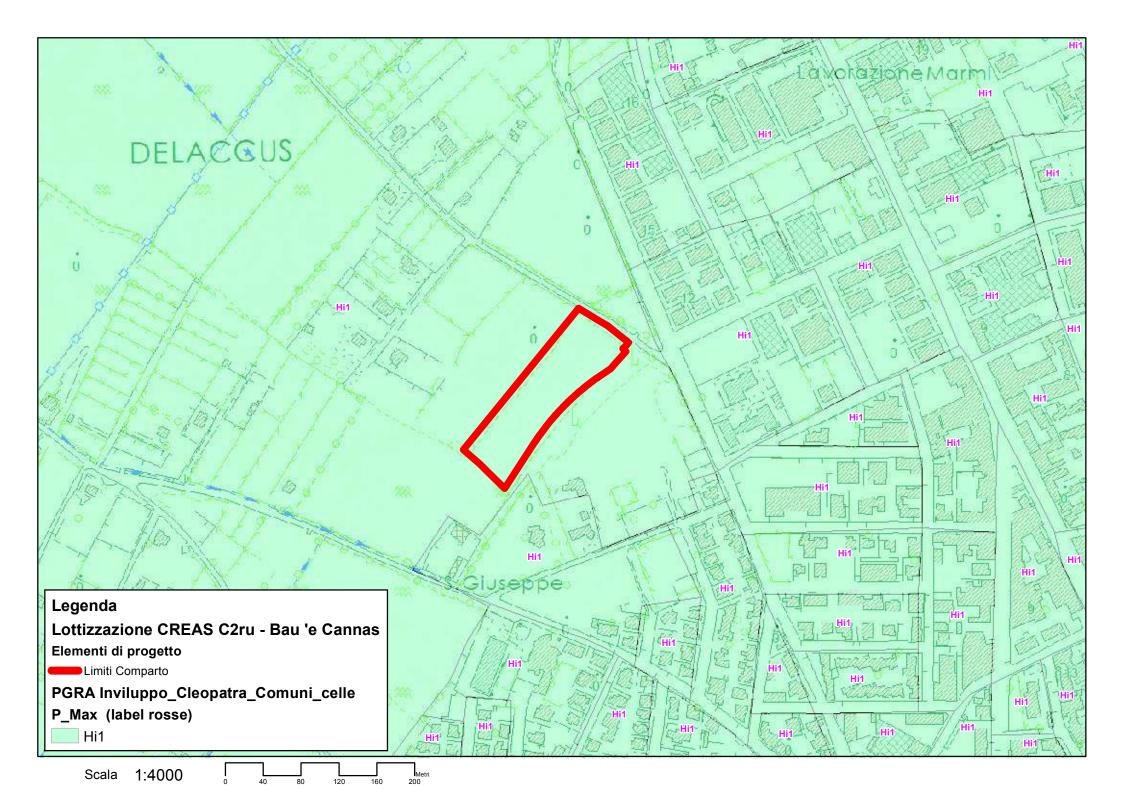
"Piano di Lottizzazione convenzionato C2ru, individuato in Località Bau Cannas del Comune di Oristano";

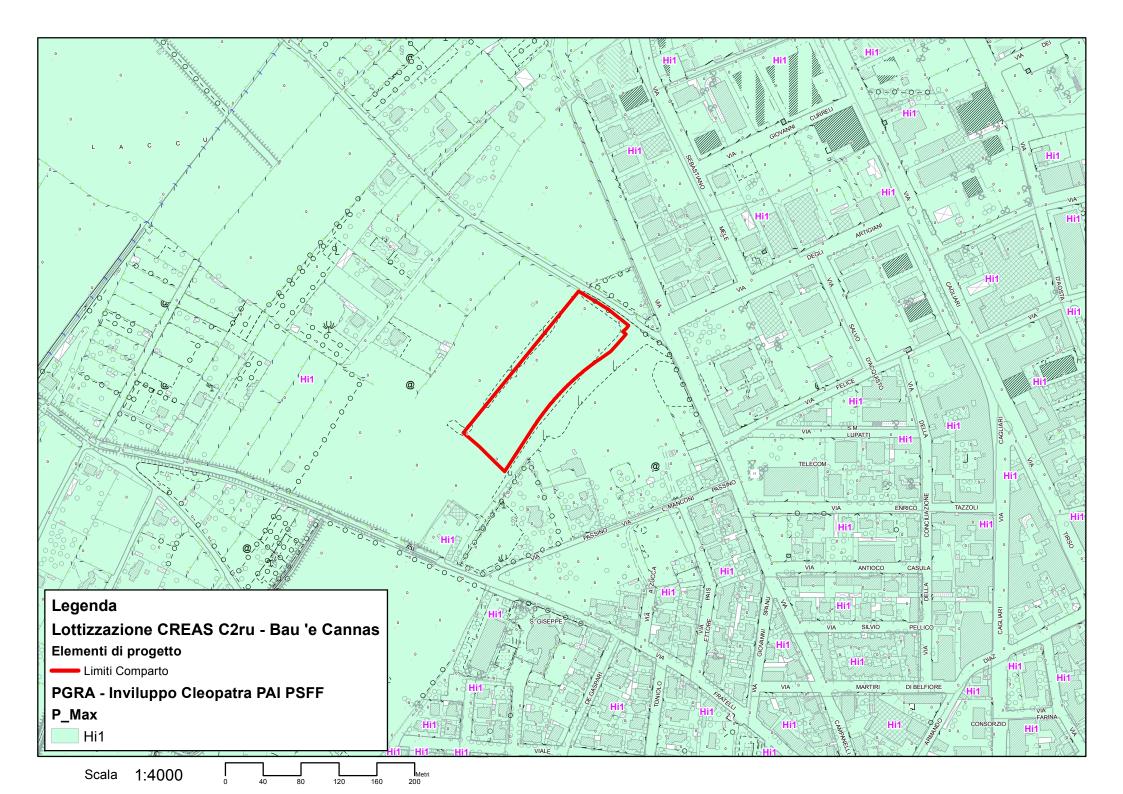
COMMITTENTE: Creas S.r.l., via Regina Elena n°63, San Nicolò d'Arcidano (OR);

PROGETTISTA e D.L.: Ing. Stefano Volpe, via Regina Elena N° 63, San Nicolò d'Arcidano (OR).

L'Ingegnere Idraulico Davide Sechi


Il Geol. Fausto Alessandro Pani


Il Geol. Roberta Maria Sanna



ing. Davide Sechi

